About Research+Code Blog

NLP Papers

The general theme that these papers follow is symbolic reasoning and grounding to structured meaning representations and program induction.

Here’s the list. Happy reading!


Probabilistic Neural-symbolic Models for Interpretable Visual Question Answering
Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, Devi Parikh


Neural Programmer-Interpreters
Scott Reed, Nando de Freitas


Program-Guided Image Manipulators
Jiayuan Mao, Xiuming Zhang, Yikai Li, William T Freeman, Joshua B Tenenbaum, Jiajun Wu


Learning Compositional Neural Programs with Recursive Tree Search and Planning
Thomas Pierrot, Guillaume Ligner, Scott Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas


Neural module networks
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein


Neural Compositional Denotational Semantics for Question Answering
Nitish Gupta, Mike Lewis


Learning programs: A hierarchical Bayesian approach
Percy Liang, Michael I Jordan, Dan Klein


Synthesizing program input grammars
Osbert Bastani, Rahul Sharma, Alex Aiken, Percy Liang